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Abstract
Risks are present in all companies and are an es-

sential factor for investors, and not including them
in the decision-making process can lead to inefficient
decisions. With the latest computational tools, simu-
lations can be run to forecast possible outcomes and
yield new insights. One of the most important crite-
ria for profit-making in stock dependent businesses is
proper and timely inventory management. This work
introduces a discrete-event simulation model capable
of integrating both logistic elements, such as inven-
tory control, and also economic variables, such as
capital flow. A comparative analysis of how differ-
ent configurations of the s,S Inventory Policy can lead
to contrasting economic scenarios is presented along
with relevant statistical summaries of the net profit af-
ter simulating six months.
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Introduction
Risk assessment is a key element to evalu-
ate any investment. Entrepreneurs and man-
agers must decide what to do with the avail-
able data, which is usually incomplete and
noisy, and the unavoidable uncertainty, pro-
duced by the lack of information or other-
wise, leads often to prejudicial decisions.
The advances in computational tools and
electronic components made simulations
once considered implausible, possible, and
feasible. Running thousands of simulations
and performing statistical analysis with the
results allows more informed and timely
decision-making.
When simulations are combined with mod-
ern optimization techniques, it is possible to
obtain information regarding which the opti-
mum initial conditions would be (e.g. initial

inventory level, minimum inventory, and in-
ventory policies parameters), so that key per-
formance indicators (KPIs) are maximized
(e.g. capital level after 6 months).
In the context of business risk assessment,
it is now reasonable to run simulations that
can include multiple perspectives at the same
time, incorporating those essential for most
businesses, such as logistic and economic.
In this paper, a simulation model is presented
using a Monte Carlo approach. The simu-
lation integrates both logistic and economic
perspectives, as it involves inventory policy
parameters, particularly, the s,S policy [1],
and analyzes the impact on the evolution
of the inventory level and capital flow over
time. It also introduces behavioral economic
elements, such as varying the arrival and sale
rates based on whether the customer expec-
tations (price and inventory availability) are
satisfied. The KPI of interest is the capital
level at the end of the simulation.
The triggering questions that motivate this
study are: (1) How do different s,S values
affect the capital flow? (2) Is there an un-
derlying pattern on the s,S values that leads
to different economic scenarios? (3) How
much time would it take to recover the ini-
tial investment? (4) Is the expected capital
flow heteroscedastic? (5) Does the simula-
tion ever enter a steady state?
The next section describes previous works
done in this direction, then the methodology
and model description are explained, the fol-
lowing section details the experiments per-
formed, and finally, the results are summa-
rized along with the conclusions.
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Figure 1: S,s Policy example with s = 200 and S = 450

State of the Art
The use of the s,S policy was proposed in
1950 by [1]. Other works in the inventory
control field, like [2], compare only a few
runs of a simulation, in this case using (Q,R)
policy, instead of focusing on other KPIs
such as the ones described in the previous
section.
Simulations involving Monte Carlo Methods
(MC) take advantage of modern computa-
tional resources and repeat a given experi-
ment hundreds or thousands of times, avoid-
ing the huge uncertainty present when do-
ing inference with small sample size. As a
system grows more complex, analytical and
numerical approaches are extremely difficult
to solve, and a simulation (either stochas-
tic or deterministic) can be useful to repli-
cate those systems, which generally include
many variables interacting with each other.
There are three well-known simulation
paradigms. First, System Dynamics [3] uses
differential equations to represent popula-
tions, and relationships between the vari-
ables to reflect interactions in the actual phe-
nomena. Second, Agent-Based Simulation
[4], focuses on the elements rather than on
the interactions. Finally, Discrete Event
Simulation [5] relies on modeling each in-
teraction in the actual system as an event oc-
curring on a specific time, and a global clock
which determines which the next event is.
In this paper, a Discrete Event Simulation is
used, as it is the paradigm that best repre-
sents the system [6]. In the following sec-
tion, details about the implementation and
the assumptions are described.

Methodology
In this section, several elements needed to
replicate the study are presented. First, the
general assumptions, then the input and out-
put variables, and finally how the simulation
model combines the mentioned variables.

Policy Description
The s,S policy is an inventory policy that
states that when the present inventory level
falls below a certain threshold s, an order
must be scheduled, the size of the order
equals a given inventory level S minus the
current inventory level. In Figure 1, an ex-
ample of this policy is presented.
Mathematically, let I(t) be the inventory
level at a time t, then the amount Z to order
is calculated as follows:

Z =

{
S− I(t) if I(t)< s

0 otherwise

Assumptions
To reduce the complexity to a manageable
level, the following assumptions were made:

Economic Assumptions

• The economic landscape is stable (neg-
ligible inflation).
• The niche market is kept constant (no

major changes in the demand).
• The firm sells only one product.
• The customer will always want to buy

if the price is less or equal than their ex-
pectations.

Logistic Assumptions

• The product has a single supplier.
• All necessary products are ordered and

delivered at once.



• It is not possible to cancel or modify an
existing order.
• The payment of the order is done at the

moment of its scheduling.
• The inventory level is never negative.
• When an order arrives, if the amount or-

dered is greater than the maximum in-
ventory, the exceeding inventory is lost.
• The stock only contain non-perishable

products

Behavioural Economics Assumptions

• If the customer expectation is satisfied,
the arrival rate of customers increases,
if not, it decreases.

Variables
In the present work, the following conven-
tion is used: the input quantities of the sim-
ulation are called Parameters, the results of
the simulation are called Output Variables,
and the values the Parameters take at the be-
ginning of the simulation are called Initial
Conditions (Figure 2). The distinction be-
tween Parameters and Initial Conditions is
made because some of the parameters are
modified by a feedback loop during the sim-
ulation. To distinguish the parameters, those
with feedback loop are expressed with a time
subindex (e.g. λt) and those without it don’t
have a time subindex (e.g. Z).

It is expected that the Output Variables ex-
hibit random behavior due to the stochas-
tic elements in the simulation. Further-
more, each of the Output Variables are
assumed i.i.d (Independent and Identically
Distributed) for a given set of initial condi-
tions and a given time t. Therefore, thanks
to the Law of Large Numbers, Confidence
Intervals can be generated for the mean (or
median) of each Output Variable.
For this simulation, if a steady state for an
Output Variable is reached, it is expected
that for a time ti (when that state begins) on-
wards the variable will be i.i.d. ∀ t j / t j ≥ ti.

Parameters

The parameters of the model, along with
their description, are detailed below,
grouped in their respective domain.

Customer arrival
Each customer arrives according to a Poisson
Process. The distribution of the number of
daily arrivals is not constant throughout the
simulation, instead, the Average Daily Ar-
rivals is adjusted based on whether the de-
mand was satisfied or not (following rules
explained in the previous section). The
change of this parameter follows a logis-
tic growth with the minimum and maximum
values given as additional parameters.
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Daily Arrivals∼ Poisson(λt)

where λt is the Average Daily Arrivals for
a time t. The adjustment for λt is done as
follows:

change(P,r,K) = P
r(K−P)

K

λt+1 =

max(m, λt + change(λt ,G,M)) If A
max(m, λt− change(λt ,Dp,M)) If B
max(m, λt− change(λt ,Di,M)) If C

Where A means that the customer expecta-
tions were satisfied, B that they were not due
to price and C were not due to inventory.
Moreover, G is the logistic growth rate (Ar-
rival Growth Rate), Dp is the decay rate due
to price (Arrival Decay Rate (Price)), Di is
the decay rate due to missing inventory (Ar-
rival Decay Rate (Inventory)), M is the theo-
retical maximum for number of daily arrivals
(Maximum Arrivals) and m is the theoreti-
cal minimum for the number of daily arrivals
(Minimum Arrivals). In this implementation,
the function is a truncated logistic function.
Each customer purchases, on average, a cer-
tain amount of products Average Sale Size,
which is assumed to follow a Poisson distri-
bution. Namely:

Average Sale Size∼ Poisson(A)

where A is the Average Sale Size.

Business and economic
At the beginning of the simulation, an Ini-
tial Investment is made, which constitutes
the initial capital level to be updated with
each sell and each order.
The Profit is the financial gain expected over
the total costs. The total costs are deter-
mined by the cost of each unit Unit Cost,
the fixed costs, the latter are the overall costs
of the different services, taxes and employ-
ees Fixed Costs. For simplicity, the fixed
costs are proportionally distributed during
the whole month to smoothen the capital
flow curve.
The product price, Price, increases or de-
creases according to the fluctuations in the

Average Daily Arrivals. Furthermore, it is
assumed that there is a Price Ceiling at
which the product can be sold and is thus
the maximum selling price, and a minimum
price, calculated so that the firm breaks even,
i.e., it covers the total costs.
To calculate the product Price, it is necessary
to estimate the total cost. The process to cal-
culate the Price is described in the following
steps:

1. Estimate the number of units sold in a
month, Umonth.
Umonth = λt ·A · 365

12
2. Estimate the monthly cost of those units

Cmonth.
Cmonth =Umonth ∗Cunit +Fixed

3. Estimate the minimum price to break
even Minprice.
Minprice =Cmonth/Umonth

4. Calculate Price Price.
Price =Cmonth ∗ (1+Profit)/Umonth

5. Truncate to limits if necessary.
Price =
min(max(Price,Minprice),Price Ceiling)

It is assumed that the customer price expec-
tation is at least the Market Price with a posi-
tive percentual variation of up to 20%, math-
ematically:

P∼MP∗ (1+Triag(0,0.1,0.2))

where P is the customer price expecta-
tions, MP is the Market Price and Triag is
the triangular distribution with parameters
(min,mode,max).
In summary, the price is calculated as fol-
lows:

Price = min(PC, Cmonth ∗ (1+ pro f it))

where PC is the Price Ceiling.
Inventory and Orders
At the beginning of the simulation, the Ini-
tial Inventory Level is set and is updated dur-
ing the simulation with each sell and each
order. Also, the initial Stock Floor (s) and
Stock Ceiling (S) are established, and are
both modified during the simulation. The in-
ventory is checked with a given Control Fre-
quency, where the inventory is compared to



the Stock Floor, and, in case it is lower than
it, a new order is scheduled according to the
s,S Policy. In case there is not enough cap-
ital available to pay the order, the order size
is reduced to the maximum size that can be
paid.
The Maximum Inventory establishes the
maximum amount of products that can be
hold as inventory. When the order arrives,
if the total inventory level is greater than the
Maximum Inventory, it is round down to this
value. Namely:

I(t +1) = min(Maximum Inventory, I(t)

where I(t) represents the inventory level for
a given time t. This rounding is always done
after the arrival of a new order.
The mechanism to replenish the inventory is
to order new products and wait until the sup-
plier delivers them. The order delay OD, the
time that takes to the order to arrive, follows
a triangular distribution as follows:

OD∼ Triag(ODa,ODb,ODc)

where ODa is the Minimum Order Delay,
ODb is the Maximum Order Delay, and ODc
is the Mode Order Delay.

Simulation Length
The Simulation Length is the number of
consecutive days to run the simulation.
Ideally, it should be at the end of a month to
better resemble reality.

Output Variables

The Output Variables are functions of the
time t that consider the specific value for t.
All the Output Variables are listed below:
• Capital(t): capital level at time t
• Inventory(t): inventory level at time t
• Stock f loor(t): stock floor at time t
• Stockceiling(t): stock ceiling at time t

A desirable characteristic in the capital vari-
able is heteroscedasticity, this implies that
the variability of the Capital(t) will widen
as time progresses. Namely:

σ
2(Capital(ti))< σ

2(Capital(t j)), ti < t j

This property should be present in the simu-
lation, as it represents more truthfully the re-
ality, because, as time progresses, the preci-
sion of the model should decrease, since the
more further the point in time, the greater the
uncertainty. For instance, it is reasonable to
assume that the uncertainty for 6 months is
much less than for 36 months.

Model
To combine all the aforementioned variables,
a discrete-event paradigm is used, because it
was proven useful in the past for this sce-
nario [6]. This type of simulation has three
main components, (1) the state of the system,
where the value of all the variables is stored,
(2) a series of events that are run every time
they are scheduled and that change the state
of the system, and, (3) a global clock which
determines which is the next event to be ex-
ecuted and always advances to the most im-
minent of the future events, where both the
state of the system and the knowledge of the
times of future events are updated.

Events
There are 3 main events present in the simu-
lation, (1) Control, (2) Customer Arrival, and
(3) Order Arrival. Each is described in detail
below:
Control: this event is scheduled periodically
with a fixed frequency Control Frequency
during the simulation. It checks whether the
Inventory(t) is less than the Stock Floor(t),
and, if so, the order size is set to the differ-
ence of Stock Ceiling(t) and Inventory level.
If the Capital(t) is greater or equal than the
ordering cost (Unit Cost times order size),
an Order event is scheduled according to the
supplier delay explained in the previous sec-
tion. If Capital(t) is not big enough, a new
order amount is calculated so that its order-
ing cost is less or equal than the capital level.
If the order amount is greater than 1, an Or-
der event is scheduled. Finally, a new con-
trol event is scheduled following the given
frequency period.
Customer Arrival: this event is scheduled
using the distribution associated with the



Common Parameters
Average Daily Arrivals 3 Maximum Arrivals 500 Minimum Arrivals 1 Average Sale Size 2

Growth Rate 0.005 Decay Rate (Inventory) 0.1 Decay Rate (Price) 0.001 Initial Investment 5000

Profit 2 Unit Cost 3 Fixed Costs 5000 Minimum Order Delay 0.5

Mode Order Delay 1 Maximum Order Delay 6 Market Price 7 Price Ceiling 14

Maximum Inventory 3000

Table 1: Common Economic Parameters

Daily Arrivals. When a customer arrives,
the sale size is calculated and, if that amount
of stock is available and the price fits the
customer expectations, then the sale is per-
formed which means (1) the capital level in-
creases by the amount sold times the price
and (2) the inventory level decreases by the
amount sold. Finally, the Price and the Av-
erage Daily Arrivals are updated and a new
arrival event is scheduled.
Order Arrival: when an order arrives, the
Inventory(t) is increased by the order size,
and then round to the Maximum Stock in case
it is greater than it. The time of the next or-
der is not specified, as it is assigned in the
Control event.

Experiments
The main focus of this paper is to evaluate
the economic impact of the inventory-related
parameters, therefore, different experiments
were performed to show the flexibility of the
developed model. In particular, four relevant
economic scenarios are considered, which
the simulation model should be able to repli-
cate, being NP the net profit (i.e. Total In-
come - Total Expenses):

1. Profit without Losses (PNL): the com-
pany presents profits without interme-
diate losses, i.e. NP is positive and the
capital is never negative during the sim-
ulation.

2. Profit with Losses (PL): the com-
pany presents profits with intermediate
losses, i.e. NP is positive and the capi-
tal could have been negative during the
simulation.

3. Breaks Even (E): the firm breaks even,
i.e. NP can be positive or negative but
it is approximately zero.

4. Loss (L): the company presents losses,
i.e. NP is negative.

To calculate NP, the Initial Investment is
subtracted from the Capital(t) at the end of
the simulation. The simulation length is set
to 6 months.
The parameters are divided into two groups,
(1) those who are kept fixed in all scenarios
and (2) those who are scenario-dependent.
The only parameters that differ in each sce-
nario are those related to the inventory con-
trol, namely Control Frequency, Initial In-
ventory Level, Stock Floor, Stock Ceiling. In
Table 1 all the economic (fixed) parameters
are listed.

Scenario-Specific Parameters
To test whether the simulation model is capa-
ble of reproducing the mentioned scenarios,
an optimization was done to get the values.
The optimization method used was Bayesian
Optimization through the Python Package
Optuna [7], and the objective functions were:

1. PNL: maximize NP but return 0 if at
any time the Capital(t) is less than or
equal to 0.

2. PL: maximize NP.
3. E: minimize abs(NP).
4. L: minimize NP.

The values of the parameters were the best
among 20 independent optimizations, of
1000 iterations each, each consisting of 5
replicates of the whole simulation. The val-
ues are shown in Table 2.

Results
For each scenario, 100 runs were per-
formed. The model was implemented us-
ing the Python programming language and
its scientific toolbox, including Numpy [8],



Figure 3: Confidence Interval Chart

Scenario Dependent Parameters
PNL PL E L

Control Frequency 1 1 22 27

Inventory Level 2754 441 2349 0

Stock Floor 2807 2827 3 0

Stock Ceiling 2799 2889 65 137

Table 2: Scenario-Specific Parameters

Pandas [9], and Matplotlib [10].
In Table 3, following the principle behind
[11], the Confidence Interval (CI) (α = 0.05)
for mean of the Capital Level at the end
of the simulation (6 months) is shown for
each scenario. In Figure 3, a Confidence
Interval Chart for the mean of the Capital
Level in each scenario is shown. Further-
more, the change in width of the CI over
time is on average positive for the whole time
domain, indicating an always growing vari-
ance, as illustrated in Figure 4. This was also
proved analytically by a rejected Student’s t-
test (mean= 0, α = 0.05) and a rejected Lev-
ene test (α = 0.05). Also, all 100 runs for the

PNL scenario can be seen in Figure 5.

Capital Confidence Interval (95%)
PNL 233774±13869 PL 218853±12658

E 7559±337 L −22557±25

Table 3: Confidence Interval (95%) for
the Capital Level after 6 Months

Discussion
The work uses economic parameters that
were arbitrarily chosen, however, a fit to real
data and a posterior calibration is needed be-
fore implementing the proposed model in a
real-world scenario. Moreover, some of the
assumptions may be too restrictive, such as
the complete avoidance of inflation or the
fact that the market price is fixed.

Conclusions
First, clear and distinct patterns emerged for
each scenario: (1) the lower the control fre-

Figure 4: Width of Capital Flow CI. Width over Time (above), width instant change with
cumulative moving average (below)



Figure 5: Capital Flow - 100 Simulations

quency, the higher the profit; (2) to maximize
the profit, the initial stock should be as high
as possible, although low initial stock does
not imply breaking even or losing; (3) in both
profitable scenarios, stock floor, and stock
ceiling were close to the maximum stock
possible (greater than the 80th percentile of
possible values); (4) the most critical factor
to break even or losing is to have either a low
stock ceiling or a high control frequency.
Second, the return of the investment in both
profitable scenarios was between the third
and fourth month. Additionally, sustaining
losses throughout the simulation did not gen-
erate higher profits than applying a no-loss
policy.
Furthermore, as explained in the Results
Section, the variance increases continuously
over time, implying heteroscedasticity and
therefore reflecting the basic intuition that
long-term forecasts are less precise than
short-term predictions.
Finally, in none of the scenarios tested the
simulation reaches a steady state. If desired,
a more complex control system should be in-
corporated.
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